CYANOALKYL COMPLEXES OF PLATINUM(II)

IV*. NUCLEOPHIIIC ATTACK ON THE CN GROUP BY AMINES

RENZO ROS**, JACQUES RENAUD**** and RAYMOND ROULET* ${ }^{*}$
Institute of Inorganic and Analytical Chemistry, University of Lausanne, Place du Châteali 3, Lausanne (Switzerland)

(Received July 11th, 1975)

Abstract

Summary The nucleophilic addition of amines ($\mathrm{ArNH}_{2}, \mathrm{ArRNH}, \mathrm{RR}$ 'NH) to the σ-coordinated CN group of cis-[Pt $\left(o-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2} \underline{2}\left(\mathrm{BF}_{4}\right)_{2}$ yields stable amidine complexes quantitatively. Precoordination of the nucleophile is the first step of the addition. The addition of NaN_{3} to cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}-$ $\left(\mathrm{BF}_{4}\right)_{2}$ gives the stable cis- $\mathrm{PtN}_{3}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ which on heating undergoes a 1,3 intramolecular cycloaddition to give the corresponding tetrazolate complex. Series of trans and cis influences of ligands were established, based on the ${ }^{1} J(\mathrm{PtP})$ coupling constants of 40 cyanoalkyls and derivatives. No general correlations were found between ${ }^{1} \delta(\mathrm{PtP})$ and the chemical shift $\delta(\mathrm{P})$, nor between ${ }^{1} J$ and ${ }^{2} J(\mathrm{PtCH})$.

Introduction

Investigations of the reactions of nitriles and of various ligands containing a CN group coordinated to transition metals have dealt mainly with their hydration to give carboxamides [1-4] and with the preparation of iminoether complexes [5]. In the previous parts of this series [6] we reported the preparation and spectroscopic properties of various cyanoalkyl complexes of the type $\operatorname{PtX}(\mathrm{RCN}) \mathrm{L}_{2}$ and $\left[\mathrm{Pt}(\mathrm{RCN}) \mathrm{L}_{2}\right]_{2}\left(\mathrm{BF}_{4}\right)_{2}\left(\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{n} \mathrm{CN}, n=1-3, o-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} ; \mathrm{L}=\right.$ $\left.\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Me}, \mathrm{AsPh}_{3} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}\right)$ and the preparation of stable iminoether, iminothioether, amide and imide derivatives of the o-cyanobenzyl complexes [6c].

[^0]TABLE 1
${ }^{1}$ H AND ${ }^{31 P}$ NMR SPECTRAL DATA FOR PRODUCTS OF NUCLEOPHILIC ATTACK ON O.CYANOBENZYL—Pt(II) COMPLEXES

Complex	$\begin{aligned} & \delta\left(\mathrm{CH}_{2}\right)^{a} \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & { }^{2} \mathrm{~J}(\mathrm{PtCH}) \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{aligned} & 3_{J(\mathrm{PPtCH})} \\ & (\mathrm{Hz}) \end{aligned}$	δ (others) (ppm)	$\begin{aligned} & \delta(\mathrm{P})^{c} \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & I J(P t P){ }^{d} \\ & (H z) \end{aligned}$	$\begin{aligned} & 2 J(\mathrm{PP}) \\ & (\mathrm{Hz}) \end{aligned}$
cis-[Pt $\left.\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{N}\left(\mathrm{CHH}_{3}\right)_{2}\right\}\left(\mathrm{PPH}_{3}\right)_{2}\right] \mathrm{BF}_{4}$	b	b	0	2.68s $\left(\mathrm{NCH}_{3}\right)$	25.1d	1907	15
II cls-[PL $\left.\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$	b	b	b	$2.91 \mathrm{q}\left(\mathrm{NCH}_{2}\right)$	16.4 d 23.9 d	3974 1855	15
III cir-[$\left.\mathrm{Pt}\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Br}_{4}$	2.79q	65	6 (cis)	$0.88 \mathrm{t}\left(\mathrm{CH}_{3}\right)$ $2.72 \mathrm{~s}\left(\mathrm{NCH}_{3}\right)$	$16.5 d$ 24,6d	4024 1889	15
IV cis-[$\mathrm{Pt}^{\text {a }}$ [$\left.\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{NC}_{5} \mathrm{H}_{10}\right\}\left(\mathrm{PPL}_{3}\right)_{2}\right] \mathrm{BF}_{4}$	b	62	$b^{8 \text { (trans })}$	$2.75 \mathrm{~m}\left(4 \mathrm{H} ; \alpha-\mathrm{CH}_{2}\right.$)	16.1 d 25,2d	4022 1900	15
$V . c i s-\left\{\mathrm{Pt}\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{NH}\left(p \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$	$2.73 q$	66	6 (cis)	$1.49 \mathrm{~m}\left(6 \mathrm{H} ; \beta, \gamma-\mathrm{CH}_{2}\right)$ $1.97 \mathrm{~s}\left(\mathrm{p} \cdot \mathrm{CH}_{3}\right)$	16.2 d 23.7 d	3958 1843	15
VI' cis-[Pt $\left.\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{NH}\left(p \cdot \mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$	2.759	66	$\begin{aligned} & 8 \text { (trans) } \\ & 6 \text { (cis) } \end{aligned}$	$\begin{aligned} & 8.30(\text { broad, } \mathrm{C}-\mathrm{NH}) \\ & 3.75 \mathrm{~s}\left(\mathrm{p} \cdot \mathrm{OCH}_{3}\right) \end{aligned}$	17,2d	3990	
VII cis-[Pt $\left.\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right\}\left(\mathrm{NH}_{3}\right)\left(\mathrm{PPH}_{3}\right)_{2}\right] \mathrm{Br}_{4}$	2,60q	77	$\begin{aligned} & 9 \text { (trans) } \\ & 6 \text { (cis) } \end{aligned}$	8.27 (broad, $\mathrm{C}-\mathrm{NH}$) 2.33 (broad, NH_{3})	19.3d	1844	19
			11 (trans)		16.4d	4148	
VIII cis- $\mathrm{Pl}^{(}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)($ phtalimido $)\left(\mathrm{PPh}_{3}\right)_{2}$	2.73q	78	7 (cis)		23.1d	1945	16
			10 (trans)		14.0d	3708	
IX cis- $\mathrm{PtN}_{3}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPl}_{3}\right)_{2}$	$2.63 q$	78	6 (cis)		19,9d	1813	16
			10 (trans)		19.5d	4062	
$\mathrm{X} \quad$ cis- $\mathrm{Pl}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	2.539	65	7 (cis)		23.1d	1891	14
			9 (trans)		17.5d	3974	

${ }^{a}$ In CDCl_{3}; TMS as internal standard. ${ }^{6}$ Not observed, ${ }^{c}{ }^{\text {In }} \mathrm{CDCl}_{3}$; positive sign for a resonance at lower field than $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external reference); $\delta\left(\mathrm{PPM}_{3}\right)-5,8$ ppm. ${ }^{d}$ Smaller ${ }^{1} J$ for P trans to CH_{2}.

This paper deals with the nucleophilic attack by primary and secondary amines on the CN group of cis- $\left[\mathrm{Pt}\left(o-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left(\mathrm{BF}_{4}\right)_{2}$ to yield a new series of stable amidine complexes. N-substituted amidine complexes have been prepared by Wilkinson et al. [7] by treating primary aromatic amines with tetrachlorobis(alkanonitrile)rhenium(IV). Lebedinskii's "anomalous" aminenitrile complexes of $\mathrm{Pt}^{\mathrm{II}}$ [8] have been found since to be four coordinated compounds containing two amidine and two amine ligands $\left[\mathrm{Pt}\left\{\mathrm{RC}(\mathrm{NH})=\mathrm{NHR}^{\prime}\right\}_{2^{-}}\right.$ $\left.\left(\mathrm{R}^{\prime} \mathrm{NH}_{2}\right)_{2}\right] \mathrm{X}_{2}$ [9].

Results and discussion

The complex cis- $\left[\mathrm{Pt}\left(o-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left(\mathrm{BF}_{4}\right)_{2}$ obtained by reacting trans- $\mathrm{PtCl}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ with AgBF_{4} has σ-coordinated CN groups very prone to nucleophilic attack [6]. New $\mathrm{Pt}^{\mathrm{II}}$-amidine complexes are quantitatively formed on stirring at room temperature a dichloromethane solution of the cationic o-cyanobenżyl dimer and an excess of a secondary amine (dimethylamine, complex I of Table 1 ; diethylamine, II; N-methylaniline, III; piperidine, IV) or of an aromatic primary amine (p-toluidine, V ; p-anisidine, VI). These compounds are stable white chelates with an amidine group strongly bonded to platinum:

The formation of an amidine complex is clearly seen in the infrared by its $\nu(\mathrm{NH})$ band around $3300 \mathrm{~cm}^{-1}$ and two new bands in the $\nu(\mathrm{C}=\mathrm{N})$ region around $1600 \mathrm{~cm}^{-1}$ while the $\nu(\mathrm{C} \equiv \mathrm{N})$ around $2260 \mathrm{~cm}^{-1}$ disappears. The complexes were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR (Table 1), IR and Raman spectra and elemental analysis (Table 2). The proton decoupled ${ }^{31} \mathrm{P}$ spectra present an $A X$ pattern with different ${ }^{1} J(P t P)$ coupling constants, indicating that the two phosphines are cis to each other. When not hidden under other peaks, the observed methylene resonance is split into four lines of equal intensity by the two non-equivalent phosphorus (${ }^{3} J(\mathrm{PPtCH})$ of Table 1) with satellites due to coupling with ${ }^{195} \mathrm{Pt}$ (${ }^{2} J(\mathrm{PtCH})$). The amidine group is bonded through its imine nitrogen donor atom as no coupling was observed between ${ }^{195} \mathrm{Pt}$ and the $\mathrm{N}-\mathrm{CH}_{3}$ protons of complexes I and III. Mastin [10] has proposed an assignment of the cis and trans stereochemistry in bis(triphenylphosphine)platinum(II) complexes based on the relative intensity of an IR and Raman band at ca. $550 \mathrm{~cm}^{-1}$. This band was found to be very strong in the infrared (weak in Raman) of cis complexes and weak in the infrared (strong in Raman) of trans compounds. Mastin's rule holds without; exceptions for the 38 complexes reported in this series, which had their stereochemistry unambiguously assigned by ${ }^{31} \mathrm{P}$ NMR.

The first step of the addition is probably the coordination of the nucleophile HY to platinum. The equilibrium of eqn. 1 is completely shifted to the $c i s-\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}^{++}+2 \mathrm{HY} \rightleftharpoons 2 c i s-\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)(\mathrm{HY})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$
TABLE 2
analytical, ir and raman spectral data

Complex	$\begin{aligned} & \text { M.p. (dec.) } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Analysis found (calcd.) (\%)				$\begin{aligned} & v\left(\mathrm{NHI}^{\prime}\right) \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \nu(C=N) \text { region } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	Band at$\begin{aligned} & 550 \pm 5 \\ & \mathrm{~cm}^{-1} \mathrm{a} \end{aligned}$	Others
		C	H	N	F				
I	215-219	$\begin{gathered} 56.60 \\ (57,08) \end{gathered}$	$\begin{gathered} 4.45 \\ (4.48) \end{gathered}$	$\begin{gathered} 3.01 \\ (2.89) \end{gathered}$	$\begin{gathered} 8.02 \\ (7.85) \end{gathered}$	$\begin{aligned} & \text { IR 3348w } \\ & \text { R 3350vw } \end{aligned}$	1582s, 1550s	IR 546s R 550vw	$1055 \nu\left(\mathrm{BF}_{4}\right)^{\text {b }}$
II	200-215	$\begin{gathered} 57.23 \\ (57.89) \end{gathered}$	$\begin{gathered} 4.74 \\ (4.76) \end{gathered}$	$\begin{gathered} 2,91 \\ (2,81) \end{gathered}$		3350 w	$1575 \mathrm{~s}, 1540 \mathrm{~s}$	In 545s	$1050 \mathrm{p}\left(\mathrm{BF}_{4}\right)$
III	263-266	$\begin{gathered} 59.23 \\ (59,47) \end{gathered}$	$\begin{gathered} 4.33 \\ (4.40) \end{gathered}$	$\begin{gathered} 2.76 \\ (2.72) \end{gathered}$	$\begin{gathered} 7.60 \\ (7.38) \end{gathered}$	3335, 3360w	1578s, 1543s	IR 549s	$1055 \nu\left(\mathrm{BF}_{4}\right)$
IV	238-244	$\begin{gathered} 57.70 \\ (57.79) \end{gathered}$	$\begin{gathered} 4.83 \\ (4.70) \end{gathered}$	$\begin{gathered} 3.03 \\ (2.78) \end{gathered}$		3375 w	1580s, 1548s	IR 548s	10551 (BF_{4})
V	262-267	$\begin{gathered} 59,22 \\ (59,47) \end{gathered}$	$\begin{gathered} 4.26 \\ (4.40) \end{gathered}$	$\begin{gathered} 2.83 \\ (2.72) \end{gathered}$	$\begin{gathered} 7.54 \\ (7.38) \end{gathered}$	3330 sh, 3315w	1585s, 1541 vs $1612 \mathrm{~m}, 1510 \mathrm{~m}$	IR 548s	$1060 \nu\left(\mathrm{BF}_{4}\right)$
VI	265-270	$\begin{gathered} 57.98 \\ (58.57) \end{gathered}$	$\begin{gathered} 4.60 \\ (4.34) \end{gathered}$	$\begin{gathered} 2.79 \\ (2.68) \end{gathered}$		3300 broad	$\begin{aligned} & 1581 \mathrm{~m}, 1539 \mathrm{~s} \\ & 1607 \mathrm{~m}, 1504 \mathrm{~m} \end{aligned}$	IR 546s R 550 vw	$1063 \nu\left(\mathrm{BF}_{4}\right)$
VII	215-220	$\begin{gathered} 56.40 \\ (56,24) \end{gathered}$	$\begin{gathered} 4.52 \\ (4.18) \end{gathered}$	$\begin{gathered} 2.98 \\ (2.98) \end{gathered}$	$\begin{gathered} 8.11 \\ (8.09) \end{gathered}$	$\begin{aligned} & 3350 \mathrm{w}, 3320 \mathrm{w} \\ & 3250 \mathrm{w}, 3175 \mathrm{vw} \end{aligned}$	$1617 \mathrm{sh}, 1607 \mathrm{~m}$ $1593 \mathrm{~m}, 1586 \mathrm{~m}$	$\begin{aligned} & \text { IR 550s } \\ & \text { R } 550 \mathrm{w} \end{aligned}$	$\begin{aligned} & 2218 \mathrm{~m} \nu(\mathrm{C} \equiv \mathrm{~N}) \\ & \text { IR } \left.1063 \mathrm{D} \mathrm{BF}_{4}\right) \end{aligned}$
VIII	189-193	$\begin{gathered} 63.39 \\ (63.59) \end{gathered}$	$\begin{gathered} 4.34 \\ (4.11) \end{gathered}$	$\begin{gathered} 2,80 \\ (2,85) \end{gathered}$			$\begin{aligned} & 1655 \mathrm{~s}(\mathrm{CO}) \\ & 1630 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { IR 546s } \\ & \text { R } 548 \mathrm{~s} \text { c } \end{aligned}$	IR $2220 \mathrm{~m} \nu(\mathrm{C}=\mathrm{N})$ R 2218m
IX	224-226	$\begin{gathered} 60,29 \\ (60.19) \end{gathered}$	$\begin{gathered} 4.10 \\ (4.13) \end{gathered}$	$\begin{gathered} 6.29 \\ (6.38) \end{gathered}$				$\begin{aligned} & \text { IR } 546 \mathrm{~s} \\ & \text { R } 547 \mathrm{~m} \end{aligned}$	IR $2218 \mathrm{~m} p(\mathrm{C} \equiv \mathrm{N}) \mathrm{R} 2215 \mathrm{~m}$ IR 2058vs $\varphi\left(\mathrm{N}_{3}\right)_{\text {as }}$ R 2053w IR $1278 \mathrm{mp} \nu\left(\mathrm{N}_{3}\right)_{5}$ R 1279 m
X	247-249	$\begin{gathered} 60.26 \\ (60.19) \end{gathered}$	$\begin{gathered} 4.11 \\ (4.13) \end{gathered}$	$\begin{gathered} 6.48 \\ (6.38) \end{gathered}$				IR 548 s R 550vw	

${ }_{c}$ Mastin's identification meth od [10] of isomers of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{XY}$; the band should be strong in IR and weak in Raman for cis and the reverse for trans, ${ }^{b}$ vs, broad. ${ }^{c}$ Band of free phthalimide appear in that region.
right at room temperature for $\mathrm{HY}=\mathrm{NH}_{3}, \mathrm{MeNH}_{2}$, but it favours the dimer in the case of $\mathrm{HY}=\mathrm{MeOH}$ [6c]. Only the substituted product cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\right.$ $\left.\left(\mathrm{NH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ (VII) was obtained by bubbling ammonia through a warm solution of the cationic dimer in dichloromethane. With monoethylamine a mixture of the substituted product and of the corresponding amidine complex was obtained and could not be separated. With pyrrole the mixture apparently contained cis- $\left[\mathrm{Pt}^{2}\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{NC}_{4} \mathrm{H}_{4}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ ($\delta(\mathrm{P}) 11.8 \mathrm{ppm}^{\text {with }}$ ${ }^{1} J(\mathrm{PtP}) 3750 \mathrm{~Hz}$ and 22.6 ppm with ${ }^{1} J(\mathrm{PtP}) 1920 \mathrm{~Hz}$ for the phosphorus trans to CH_{2}), and trans- $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{HNC}_{4} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}(\delta(\mathrm{P}) 26.1 \mathrm{ppm}$, ${ }^{1} J(\mathrm{PtP}) 3070 \mathrm{~Hz}, \nu(\mathrm{CN}) 2220 \mathrm{~cm}^{-1}$). Pyrrole thus seems to catalyse the cis-trans isomerisation of the product derived from the substitution reaction.

We have observed one case where the precoordination of the nucleophile is clearly the first step of the attack of the CN group: the addition of NaN_{3} in excess to a suspension of cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left(\mathrm{BF}_{4}\right)_{2}$ gives the stable cis- $\mathrm{PtN}_{3}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (IX), but a 1,3 intramolecular cycloaddition takes place upon refluxing a solution of IX in acetone, giving the corresponding tetrazolate complex X:

Cyclisation was not observed on heating the isomer trans- $\mathrm{PtN}_{3}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)$ $\left(\mathrm{PPh}_{3}\right)_{2}$ [6b]. Beck et al. [11] have previously obtained tetrazolate palladium(II) complexes by treating trans- $\mathrm{Pd}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ with a variety of nitriles, and tetrazolate platinum(II) with $\sigma \mathrm{Pt}-\mathrm{C}$ bonds by treating cis- $\mathrm{Pt}\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ with isonitriles. Treichel et al. [12] have identified a 5 -metalo-1-methyl-1,2,3,4-tetrazole complex as the product of the reaction of $\left[\mathrm{Pt}\left(\mathrm{CNCH}_{3}\right)_{2}\right.$ (diphos) $]\left(\mathrm{PF}_{6}\right)_{2}$ with azide.

Imides are much weaker bases and their addition to the nitrile group was unsuccessful. For example, phtalimide gave no reaction while adding its potassium salt to the dimer caused the $\mathrm{Pt}-\mathrm{NC}$ bridge splitting, giving cis- $\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6}-\right.$ $\left.\mathrm{H}_{4} \mathrm{CN}\right)\left\{\mathrm{N}(\mathrm{CO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPh}_{3}\right)_{2}$ (VIII).

${ }^{31} P N M R$ data and the trans influence

The trans influence has been defined as the extent to which a given ligand L weakens the $\mathrm{M}-\mathrm{L}^{\prime}$ bond trans to it in the fundamental state of the complex. The expression for ${ }^{1} J(\mathrm{PtP})$ given by Pidcock et al. [13] showed that smaller coupling constants were associated with platinum-phosphorus bonds of lower s-character; in platinum-phosphine compounds a small ${ }^{1} J$ should indicate that the ligand in trans position to the phosphine has a high trans influence. This has been used to establish a sequence of trans influences, and the NMR sequence has been compared in a recent review with those obtained by different methods [14]. We can use the NMR data of the 48 compounds prepared in this series [6] to locate the cyanoalkyls and their derivatives in the sequence of trans influence; six-membered ring chelates are included, and we assume that the platinum.

TABLE 3
IJ(PLP) COUPIING CONSTANTS

X	$1 \boldsymbol{J}\left(\mathrm{PtP}{ }^{\star}\right)(\mathrm{Hz})$	Ref.	X	${ }^{1} \mathrm{~J}\left(\mathrm{PtP}^{*}\right)(\mathrm{Hz})$	Ref.
$\mathrm{CH}_{2} \mathrm{CN}$	2210	6a	PPh_{3}	2850	6 b
$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}$	1865	6 b	$\mathrm{NHCOC}_{6} \mathrm{H}_{4}-$	3579	6 c
			$\mathrm{N}(\mathrm{CO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	3708	this work
X	${ }^{1} J(P t P)(H z)$	Ref.	$\mathrm{N}_{4} \mathrm{CC}_{6} \mathrm{H}_{4}$	3974	this work
			$\mathrm{HN}=\mathrm{C}\left(\mathrm{NMe}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}-$	3974	this work
$\mathrm{CH}_{2} \mathrm{CN}$	2695	6 a		4010	6 c
$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}$	2850	6 b	$\mathrm{H} \overline{\mathrm{N}}=\mathbf{C}(\mathrm{SMe})_{6} \mathrm{CH}_{4}-$	4055	6 c
				4062	this work
($R=o$-cyanobenzyl and chelated derivatives; the coordinated atom is underlined; $\mathrm{N}_{4} \mathrm{C}=$ tetrazole; $\mathrm{N}\left(\mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}=\right.$ phtalimide $)$			NH_{3}	4148	this work
			Br	4350	6b
			Cl	4360	6b
			$\mathrm{NCC}_{6} \mathrm{H}_{4}-$	4450	6b
			$\mathrm{H}_{2} \mathrm{NCOC}_{6} \mathrm{H}_{4}$ -	4840	6 c

square planar geometry is not distorted. The results for the cis complexes are summarized in Table 3.

The sequence of trans influence is: $-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{CN}$ [6a] $>-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}>$ $-\mathrm{CH}_{2} \mathrm{CN}>\mathrm{PPh}_{3}>-\mathrm{NHCOC}_{6} \mathrm{H}_{4}->$ phtalimide $>$ tetrazole $\sim \mathrm{HN}=\mathrm{C}\left(\mathrm{NMe}_{2}\right)$ $\mathrm{C}_{6} \mathrm{H}_{4}->\mathrm{HN}=\mathrm{C}(\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4} \rightarrow>\mathrm{HN}=\mathrm{C}(\mathrm{SMe}) \mathrm{C}_{6} \mathrm{H}_{4} \rightarrow>\mathrm{N}_{3}>\mathrm{NH}_{3}>\mathrm{Br}>\mathrm{Cl}>$ $\mathrm{NCC}_{6} \mathrm{H}_{4}->\mathrm{H}_{2} \mathrm{NCOC}_{6} \mathrm{H}_{4}$-.

The order imide $>$ imine $>$ azide $>$ amine $>$ nitrile $>$ amide follows the order of decreasing electron density on nitrogen. For the imine complexes reported, the sequence $\mathrm{NMe}_{2}>$ OMe follows also the order of decreasing inductive effect $+I_{s}$ of the substituents.

The trans influence of alkyl is higher than that of phosphine; this order has been observed previously for other $\mathrm{Pt}^{\mathrm{II}}$ complexes [15].

Similarly the following sequence of cis influence is deduced from the ${ }^{1} J(P \mathrm{PtP})$ coupling constants of the trans complexes [6]: $\mathrm{CNAr}>\mathrm{NCCH}_{3}>$ $\mathrm{PPh}_{3}>\mathrm{N}_{3}>\mathrm{Br}>\mathrm{Cl}>-\mathrm{CH}_{2} \mathrm{CN}>-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}>-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}>-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ $\mathrm{CH}_{2} \mathrm{CN}>-\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}>-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$.

The ${ }^{31} \mathrm{P}$ resonance of a coordinated phosphine always appeared at lower field than that of the free phosphine. When comparing 14 trans-bis(triphenylphosphine) complexes, we found no general relation between the chemical shift $\delta(\mathrm{P})$ and ${ }^{1} J(\mathrm{PtP}):$ indeed, a linear relation holds only approximately for 11 compounds (Fig. 1). Such a correlation was shown to exist in trans-PtHX $\left(\mathrm{PEt}_{3}\right)_{2}$ complexes [16]. There was no correlation either between ${ }^{1} d(\mathrm{PtP})$ and the coupling constant ${ }^{2} J(\mathrm{PtCH})$ of the methylene protons in trans position to phosphorus in the 19 cis complexes of o-cyanobenzyl reported in [6] and in this work.

Fig. 1. Plot of ${ }^{1} J(P t P)$ vs. $\delta(P)$ for complexes trans- $\mathrm{PtR}(X)\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CN} 1-4 ; \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{CN} 5 ; \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{CN}\right.$ 6,$7 ; \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN} 8-11 ; \mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN} 12,13 ; \mathrm{COC}_{3} \mathrm{H}_{6} \mathrm{CN} 14 ; \mathrm{X}=\mathrm{ArNC} 1 ; \mathrm{CH}_{3} \mathrm{CN} 2 ; \mathrm{PPh}_{3} 3,8 ; \mathrm{Cl}$ $4,6,11,13 ; \mathrm{Br}, 5,7,10,12,14 ; \mathrm{N}_{3} 9$).

Experimental

The spectroscopic techniques were described earlier [6]. Dornis und Kolbe (Mulheim) carried out the microanalyses.

Preparation of complexes

cis- $\left[\mathrm{Pt}\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{NMe}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2} \int \mathrm{BF}_{4}(I)\right.$
Dimethylamine was bubbled through a solution of 1 g cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]_{2}\left(\mathrm{BF}_{4}\right)_{2}[1](\mathrm{A})$ in dichloromethane (20 ml). The solution was evaporated and the dry residue extracted with acetone; I was precipitated by adding ether, and was reprecipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether as a white powder. Yield 65%.
cis- $\left[\mathrm{Pt}\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{NEt}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}(I I)$
$\mathrm{A}(0.5 \mathrm{~g})$ was stirred with $\mathrm{Et}_{2} \mathrm{NH}(1 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ for 4 h . The volume was reduced to 5 ml and the white complex precipitated with ether. Yield 75%. The same reaction with EtNH_{2} gave a mixture of two cationic complexes which could not be separated by fractional crystallization. The reaction with pyrrole gave the mixture described in the text (the compounds were not analyzed). A did not react with diphenylamine.
cis- $\left[\mathrm{Pt}\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{5}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ (III)
A (0.5 g) and N-methylaniline were heated at $50^{\circ} \mathrm{C}$ in acetone (20 ml) for 20 h . III was precipitated by adding ether and was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / pentane. Yield 80%.
cis- $\left[\mathrm{Pt}\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(=\mathrm{NH}) \mathrm{NC}_{5} \mathrm{H}_{10}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] B \mathrm{~F}_{4}$ (IV).
A (0.5 g) was stirred with piperidine (0.6 ml) in acetone $(20 \mathrm{ml}$) for 2 h
at $50^{\circ} \mathrm{C}$, then 10 h at room temperature. The volume was reduced to 5 ml and IV precipitated by adding ether. Yield 90%.
cis- $\left[\mathrm{Pt}\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{VH}) \mathrm{NH}\left(\mathrm{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ (V) and cis-[Pt$\left\{\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(=\mathrm{NH}) \mathrm{NH}\left(\mathrm{p}-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{JBF} \mathrm{F}_{4}(\mathrm{VI})$

A (0.5 g) was stirred overnight in acetone (20 ml) with a threefold excess of p-toluidine or p-anisidine respectively, at room temperature. The volume was reduced to 5 ml , the complex was precipitated by adding ether, and was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane. Yield 80%.
cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{NH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2} / \mathrm{BF}_{4}\right.$ (VII)
A (0.4 g) was stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{mi})$ for 3 h under an atmosphere of dry ammonia. The volume was reduced to 5 ml and the white complex precipitated by adding ether. Yield 75\%.
cis-Pt $\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left\{\mathrm{N}(\mathrm{CO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mathrm{PPh}_{3}\right)_{2}$ (VIII)
$\mathrm{A}(0.5 \mathrm{~g})$ was stirred with potassium phtalimide (0.1 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ for 2 h . The filtrate was evaporated to dryness, washed with water, then with hexane. Yield 90%.
cis- $\mathrm{Pt} \mathrm{N}_{3}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (IX) and cis-Pt $\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}_{4}\right)\left(P \mathrm{Ph}_{3}\right)_{2}$ (X)
NaN_{3} in excess was added to a șuspension of A in acetone. The volume was reduced by half and the white powder washed with methanol. Yield of IX 95%. IX (0.4 g) was heated under reflux in acetone (20 ml) for 5 h . The volume was reduced to 5 ml and the white microcrystalline powder was washed with methanol. Yield of X 95%.

Acknowledgement

We acknowledge the generous support of the Fonds National Suisse de la Recherche Scientifique through grant 2.829.73.

References

[^1]
[^0]: *For part III see ref. 6c.
 ** Present address: Facolta di Chimica Industriale, Universita di Venezia (Italy).
 *** Abstracted in part from the Ph.D. thesis of J. Renaud, University of Lausanne (1975).

[^1]: 1 M.A. Bennett and T. Yoshida, J. Amer. Chem. Soc., 95 (1973) 3030, and references therein.
 2 C.R. Clark and R.W. Hay, J. Chem. Soc. Dalton Trans., (1974) 2148.
 3 K. Sakai, T. Ito and K. Watanabe, Bull. Chem. Soc. Jap., 40 (1967) 1660; S. Koniya, S. Suzuki and K. Watanabe, ibid., 44 (1971) 1440; K. Watanabe, S. Koniya and S. Suzuki, ibid., 46 (1973) 2792.

 4 A.W. Zanella and P.C. Ford, Chem. Commun., (1974) 795.
 5 H.C. Clark and L.E. Manzer, Inorg. Chem., 10 (1971) 2699.
 6 (a) R. Ros, J. Renaud and R. Roulet, Helv. Chim. Acta, 58 (1975) 133: (b) J. Organometal. Chem., 87 (1975) 379; (c) J. Organometal. Chem., 104 (1976) 271.
 7 G. Rouschias and G. Wilkinson, J. Chem. Soc. A, (1968) 489.
 8 V.V. Lebedinskii and V.A. Golovnya, Izvest. Sekt. Platiny, 16 (1939) 57; Chem. Abs., 34 (1940) 4635.

 9 N_C. Stephenson, J. Inorg. Nucl. Chem., 24 (1962) 801.
 10 S.H. Mastin, Inorg. Chem., 13 (1974) 1003.
 11 W. Beck, W.P. Fehlhammer, H. Bock and M. Bander, Chem. Ber., 62 (1969) 3637.
 12 P.M. Treichel, W.J. Knebel and R.W. Hoss, J. Amer. Chem. Soc., 93 (1971) 5424.
 13 A. Pidcock, R.E. Richards and L.M. Venanzi. J. Chem. Soc. A, (1966) 1707.
 14 T.G. Appleton, H.C. Clark and L.E. Manzer, Coord. Chem. Rev.. 10 (1973) 335.
 15 F.H. Allen and S.N. Sze, J. Ghem. Soc. A, (1971) 2054.
 16 G. Socrates, J. Inorg. Nucl. Chem., 31 (1969) 1667.

